Skip to content

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Two hands hold a black smartphone against a white background.

Engineers at the University of California San Diego have developed a simple, low-cost clip that uses a smartphone’s camera and flash to monitor blood pressure at the user’s fingertip. The clip works with a custom smartphone app and currently costs about 80 cents to make. The researchers estimate that the cost could be as low as 10 cents apiece when manufactured at scale.

The technology was published May 29 in Scientific Reports.

Researchers say it could help make regular blood pressure monitoring easy, affordable and accessible to people in resource-poor communities. It could benefit older adults and pregnant women, for example, in managing conditions such as hypertension.

“We’ve created an inexpensive solution to lower the barrier to blood pressure monitoring,” said study first author Yinan (Tom) Xuan, an electrical and computer engineering Ph.D. student at UC San Diego.

Man in a light gray sweater sits at a desk while holding a smartphone.
Edward Wang

“Because of their low cost, these clips could be handed out to anyone who needs them but cannot go to a clinic regularly,” said study senior author Edward Wang, a professor of electrical and computer engineering at UC San Diego and director of the Digital Health Lab. “A blood pressure monitoring clip could be given to you at your checkup, much like how you get a pack of floss and toothbrush at your dental visit.”

Another key advantage of the clip is that it does not need to be calibrated to a cuff.

“This is what distinguishes our device from other blood pressure monitors,” said Wang. Other cuffless systems being developed for smartwatches and smartphones, he explained, require obtaining a separate set of measurements with a cuff so that their models can be tuned to fit these measurements.

“Our is a calibration-free system, meaning you can just use our device without touching another blood pressure monitor to get a trustworthy blood pressure reading.”

To measure blood pressure, the user simply presses on the clip with a fingertip. A custom smartphone app guides the user on how hard and long to press during the measurement.

Black smartphone with a black plastic clip attached to one corner.

The clip is a 3D-printed plastic attachment that fits over a smartphone’s camera and flash. It features an optical design similar to that of a pinhole camera. When the user presses on the clip, the smartphone’s flash lights up the fingertip. That light is then projected through a pinhole-sized channel to the camera as an image of a red circle. A spring inside the clip allows the user to press with different levels of force. The harder the user presses, the bigger the red circle appears on the camera.

The smartphone app extracts two main pieces of information from the red circle. By looking at the size of the circle, the app can measure the amount of pressure that the user’s fingertip applies. And by looking at the brightness of the circle, the app can measure the volume of blood going in and out of the fingertip. An algorithm converts this information into systolic and diastolic blood pressure readings.

Two hands hold a black smartphone against a white background.
A custom smartphone app guides the user on how hard and long to press during a blood pressure measurement.

The researchers tested the clip on 24 volunteers from the UC San Diego Medical Center. Results were comparable to those taken by a blood pressure cuff.

“Using a standard blood pressure cuff can be awkward to put on correctly, and this solution has the potential to make it easier for older adults to self-monitor blood pressure,” said study co-author and medical collaborator Alison Moore, chief of the Division of Geriatrics in the Department of Medicine at UC San Diego School of Medicine.

While the team has only proven the solution on a single smartphone model, the clip’s current design theoretically should work on other phone models, said Xuan.

Wang and one of his lab members, Colin Barry, a co-author on the paper who is an electrical and computer engineering student at UC San Diego, co-founded a company, Billion Labs Inc., to refine and commercialize the technology.

Next steps include making the technology more user friendly, especially for older adults; testing its accuracy across different skin tones; and creating a more universal design.

Paper: “Ultra-low-cost Mechanical Smartphone Attachment for No-Calibration Blood Pressure Measurement.” Co-authors include Jessica De Souza, Jessica Wen and Nick Antipa, all at UC San Diego.

This work is supported by MassAITC (a program funded by the National Institute on Aging of the National Institutes of Health under award number P30AG073107), the Altman Clinical and Translational Research Institute Galvanizing Engineering in Medicine (GEM) Awards, and a Google Research Scholar Award.

Disclosures: Edward Wang and Colin Barry are co-founders of and have a financial interest in Billion Labs Inc. Wang is also the CEO of Billion Labs Inc. The other authors declare that they have no competing interests. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies.

 

As retrieved: https://today.ucsd.edu/story/super-low-cost-smartphone-attachment-brings-blood-pressure-monitoring-to-your-fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Two hands hold a black smartphone against a white background.

Engineers at the University of California San Diego have developed a simple, low-cost clip that uses a smartphone’s camera and flash to monitor blood pressure at the user’s fingertip. The clip works with a custom smartphone app and currently costs about 80 cents to make. The researchers estimate that the cost could be as low as 10 cents apiece when manufactured at scale.

The technology was published May 29 in Scientific Reports.

Researchers say it could help make regular blood pressure monitoring easy, affordable and accessible to people in resource-poor communities. It could benefit older adults and pregnant women, for example, in managing conditions such as hypertension.

“We’ve created an inexpensive solution to lower the barrier to blood pressure monitoring,” said study first author Yinan (Tom) Xuan, an electrical and computer engineering Ph.D. student at UC San Diego.

Man in a light gray sweater sits at a desk while holding a smartphone.
Edward Wang

“Because of their low cost, these clips could be handed out to anyone who needs them but cannot go to a clinic regularly,” said study senior author Edward Wang, a professor of electrical and computer engineering at UC San Diego and director of the Digital Health Lab. “A blood pressure monitoring clip could be given to you at your checkup, much like how you get a pack of floss and toothbrush at your dental visit.”

Another key advantage of the clip is that it does not need to be calibrated to a cuff.

“This is what distinguishes our device from other blood pressure monitors,” said Wang. Other cuffless systems being developed for smartwatches and smartphones, he explained, require obtaining a separate set of measurements with a cuff so that their models can be tuned to fit these measurements.

“Our is a calibration-free system, meaning you can just use our device without touching another blood pressure monitor to get a trustworthy blood pressure reading.”

To measure blood pressure, the user simply presses on the clip with a fingertip. A custom smartphone app guides the user on how hard and long to press during the measurement.

Black smartphone with a black plastic clip attached to one corner.

The clip is a 3D-printed plastic attachment that fits over a smartphone’s camera and flash. It features an optical design similar to that of a pinhole camera. When the user presses on the clip, the smartphone’s flash lights up the fingertip. That light is then projected through a pinhole-sized channel to the camera as an image of a red circle. A spring inside the clip allows the user to press with different levels of force. The harder the user presses, the bigger the red circle appears on the camera.

The smartphone app extracts two main pieces of information from the red circle. By looking at the size of the circle, the app can measure the amount of pressure that the user’s fingertip applies. And by looking at the brightness of the circle, the app can measure the volume of blood going in and out of the fingertip. An algorithm converts this information into systolic and diastolic blood pressure readings.

Two hands hold a black smartphone against a white background.
A custom smartphone app guides the user on how hard and long to press during a blood pressure measurement.

The researchers tested the clip on 24 volunteers from the UC San Diego Medical Center. Results were comparable to those taken by a blood pressure cuff.

“Using a standard blood pressure cuff can be awkward to put on correctly, and this solution has the potential to make it easier for older adults to self-monitor blood pressure,” said study co-author and medical collaborator Alison Moore, chief of the Division of Geriatrics in the Department of Medicine at UC San Diego School of Medicine.

While the team has only proven the solution on a single smartphone model, the clip’s current design theoretically should work on other phone models, said Xuan.

Wang and one of his lab members, Colin Barry, a co-author on the paper who is an electrical and computer engineering student at UC San Diego, co-founded a company, Billion Labs Inc., to refine and commercialize the technology.

Next steps include making the technology more user friendly, especially for older adults; testing its accuracy across different skin tones; and creating a more universal design.

Paper: “Ultra-low-cost Mechanical Smartphone Attachment for No-Calibration Blood Pressure Measurement.” Co-authors include Jessica De Souza, Jessica Wen and Nick Antipa, all at UC San Diego.

This work is supported by MassAITC (a program funded by the National Institute on Aging of the National Institutes of Health under award number P30AG073107), the Altman Clinical and Translational Research Institute Galvanizing Engineering in Medicine (GEM) Awards, and a Google Research Scholar Award.

Disclosures: Edward Wang and Colin Barry are co-founders of and have a financial interest in Billion Labs Inc. Wang is also the CEO of Billion Labs Inc. The other authors declare that they have no competing interests. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies.

 

As retrieved: https://today.ucsd.edu/story/super-low-cost-smartphone-attachment-brings-blood-pressure-monitoring-to-your-fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Two hands hold a black smartphone against a white background.

Engineers at the University of California San Diego have developed a simple, low-cost clip that uses a smartphone’s camera and flash to monitor blood pressure at the user’s fingertip. The clip works with a custom smartphone app and currently costs about 80 cents to make. The researchers estimate that the cost could be as low as 10 cents apiece when manufactured at scale.

The technology was published May 29 in Scientific Reports.

Researchers say it could help make regular blood pressure monitoring easy, affordable and accessible to people in resource-poor communities. It could benefit older adults and pregnant women, for example, in managing conditions such as hypertension.

“We’ve created an inexpensive solution to lower the barrier to blood pressure monitoring,” said study first author Yinan (Tom) Xuan, an electrical and computer engineering Ph.D. student at UC San Diego.

Man in a light gray sweater sits at a desk while holding a smartphone.
Edward Wang

“Because of their low cost, these clips could be handed out to anyone who needs them but cannot go to a clinic regularly,” said study senior author Edward Wang, a professor of electrical and computer engineering at UC San Diego and director of the Digital Health Lab. “A blood pressure monitoring clip could be given to you at your checkup, much like how you get a pack of floss and toothbrush at your dental visit.”

Another key advantage of the clip is that it does not need to be calibrated to a cuff.

“This is what distinguishes our device from other blood pressure monitors,” said Wang. Other cuffless systems being developed for smartwatches and smartphones, he explained, require obtaining a separate set of measurements with a cuff so that their models can be tuned to fit these measurements.

“Our is a calibration-free system, meaning you can just use our device without touching another blood pressure monitor to get a trustworthy blood pressure reading.”

To measure blood pressure, the user simply presses on the clip with a fingertip. A custom smartphone app guides the user on how hard and long to press during the measurement.

Black smartphone with a black plastic clip attached to one corner.

The clip is a 3D-printed plastic attachment that fits over a smartphone’s camera and flash. It features an optical design similar to that of a pinhole camera. When the user presses on the clip, the smartphone’s flash lights up the fingertip. That light is then projected through a pinhole-sized channel to the camera as an image of a red circle. A spring inside the clip allows the user to press with different levels of force. The harder the user presses, the bigger the red circle appears on the camera.

The smartphone app extracts two main pieces of information from the red circle. By looking at the size of the circle, the app can measure the amount of pressure that the user’s fingertip applies. And by looking at the brightness of the circle, the app can measure the volume of blood going in and out of the fingertip. An algorithm converts this information into systolic and diastolic blood pressure readings.

Two hands hold a black smartphone against a white background.
A custom smartphone app guides the user on how hard and long to press during a blood pressure measurement.

The researchers tested the clip on 24 volunteers from the UC San Diego Medical Center. Results were comparable to those taken by a blood pressure cuff.

“Using a standard blood pressure cuff can be awkward to put on correctly, and this solution has the potential to make it easier for older adults to self-monitor blood pressure,” said study co-author and medical collaborator Alison Moore, chief of the Division of Geriatrics in the Department of Medicine at UC San Diego School of Medicine.

While the team has only proven the solution on a single smartphone model, the clip’s current design theoretically should work on other phone models, said Xuan.

Wang and one of his lab members, Colin Barry, a co-author on the paper who is an electrical and computer engineering student at UC San Diego, co-founded a company, Billion Labs Inc., to refine and commercialize the technology.

Next steps include making the technology more user friendly, especially for older adults; testing its accuracy across different skin tones; and creating a more universal design.

Paper: “Ultra-low-cost Mechanical Smartphone Attachment for No-Calibration Blood Pressure Measurement.” Co-authors include Jessica De Souza, Jessica Wen and Nick Antipa, all at UC San Diego.

This work is supported by MassAITC (a program funded by the National Institute on Aging of the National Institutes of Health under award number P30AG073107), the Altman Clinical and Translational Research Institute Galvanizing Engineering in Medicine (GEM) Awards, and a Google Research Scholar Award.

Disclosures: Edward Wang and Colin Barry are co-founders of and have a financial interest in Billion Labs Inc. Wang is also the CEO of Billion Labs Inc. The other authors declare that they have no competing interests. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies.

 

As retrieved: https://today.ucsd.edu/story/super-low-cost-smartphone-attachment-brings-blood-pressure-monitoring-to-your-fingertips

Read Next

How I Talked To My Daughter About Body Image

How I talked to my daughter-and myself-about body image

Design Lab member Shannon Master recently had her article published in TIME magazine's special edition on weight loss! Her work can be found on shelves across the nation from April 12 - July 12.

Below is an excerpt from Shannon's essay Does this mean I'm a real writer? where she discusses the article for TIME magazine.

"How I talked to my daughter-and myself-about body image...tackles important social issues surrounding body-image for young girls, their mothers, and women at large. It offers research on how mothers can not only help stop the cycle of negative body image in their young daughters, but also how moms as women themselves can work to improve their own body-image. I was surprised that the editors changed very little, except for the title, which is amazing considering this thing magically ejected itself out of me in a matter of days, rather than the weeks and months I can work on something that never sees the light of day. It looks pretty spiffy in its new home, complete with updated statistics and accompanying photos across an eight-page spread; eight pages of my words about how we can reframe our own body images as mothers, in order to help our girls have everything we never had—confidence and self-esteem with an unwavering sense of worth—in a frickn’ national publication."

Read more at shannonmaster.com
Ucsd Design Lab Biometric

Researchers Develop Biometric Tool for Newborn Fingerprinting

Researchers at the University of California San Diego say they have dramatically advanced the science…

Ucsd Logo Design Lab

Message from Don Norman on Power and Prejudice

A message from Don Norman, Director of the Design Lab, regarding the protests, violence following George Floyd’s death
Design Lab Microsoft Adobe Workday Students

Design Lab Students Team with Microsoft, Adobe & Workday for Summer Projects

Steven Rick, Ailie Fraser, and Elmer Barerra are graduate and undergraduate students of the Design…

Ailie Fraser UCSD Design Lab

Ailie Fraser Aims to Support People Doing Creative Tasks with Software

“There’s so much helpful content available now, but how can it be understood and consumed by a novice?” asks Ailie Fraser, a PhD graduate, “That’s what I’m interested in answering.” She is a part of a generation of upcoming design innovators, working collaboratively with The Design Lab. Her recently published dissertation aims to support people doing creative tasks with software specifically by leveraging resources generated by experts and bringing them into the context of people's workflows; in order to make them simpler to navigate and understand.

Fraser received her PhD from UCSD in Computer Science this past spring, and is now working full-time as a Research Engineer at Adobe Research. During her PhD, she completed three internships with Adobe Research. During her first internship, she focused on the domain of photo editing in Photoshop and addressed the problems novices experience when they begin to use the application. Due to the plethora of features and tools offered by the service, it can often be overwhelming to those unfamiliar with Photoshop.
Seda Evis

Designer in Residence: Seda Evis

While Seda Evis participates as a Designer-in-Residence at UC San Diego with The Design Lab, and is VP of Strategy & Growth at FreshForm Interactive—an experience design and innovation consultancy—she also claims to have what she refers to as a superpower: her hybrid mind, which she describes as the combination of two worlds: the business side and the design side.

As a Designer-in-Residence at The Design Lab,  Evis enjoys working in an interdisciplinary setting, which she says enhances her existing skillset. “Academia tends to be quite separate from how the practice is done,” she explains. “I find ways of doing interdisciplinary work, as well as cross industry work, very important for innovation because that’s how you actually get seeds from different places.” As of now, most of Evis’s work at The Design Lab has been working with the Community Team on the now winning bid for the World Design Capital 2024 (WDC) designation. Her work dovetails with her role on the Board of  Directors for the Design Forward Alliance–a non-profit organization started by the Lab in partnership with the regional design community and one of the partners co-leading the HOME 2024 WDC efforts alongside the Design Lab, Burnham Center for Community Advancement, the City of San Diego and the City of Tijuana.   The designation puts the San Diego-Tijuana region in a prestigious international cohort recognized for the “effective use of design to drive economic, social, cultural and environmental development.”  Even the proposal theme is significant, Evis says. “Home” not only refers to the immense and diverse communities of San Diego and Tijuana that form one, but also serves as an acronym for Human-centered, Open, Multi-disciplinary/Multi-cultural, and Experimental. For Evis, participating in HOME2024 signifies her career “coming full circle.” 
Back To Top